__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
and(tt, X) → X
isList(V) → isNeList(V)
isList(nil) → tt
isList(__(V1, V2)) → and(isList(V1), isList(V2))
isNeList(V) → isQid(V)
isNeList(__(V1, V2)) → and(isList(V1), isNeList(V2))
isNeList(__(V1, V2)) → and(isNeList(V1), isList(V2))
isNePal(V) → isQid(V)
isNePal(__(I, __(P, I))) → and(isQid(I), isPal(P))
isPal(V) → isNePal(V)
isPal(nil) → tt
isQid(a) → tt
isQid(e) → tt
isQid(i) → tt
isQid(o) → tt
isQid(u) → tt
__: {1, 2}
nil: empty set
and: {1}
tt: empty set
isList: empty set
isNeList: empty set
isQid: empty set
isNePal: empty set
isPal: empty set
a: empty set
e: empty set
i: empty set
o: empty set
u: empty set
↳ CSR
↳ CSDependencyPairsProof
__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
and(tt, X) → X
isList(V) → isNeList(V)
isList(nil) → tt
isList(__(V1, V2)) → and(isList(V1), isList(V2))
isNeList(V) → isQid(V)
isNeList(__(V1, V2)) → and(isList(V1), isNeList(V2))
isNeList(__(V1, V2)) → and(isNeList(V1), isList(V2))
isNePal(V) → isQid(V)
isNePal(__(I, __(P, I))) → and(isQid(I), isPal(P))
isPal(V) → isNePal(V)
isPal(nil) → tt
isQid(a) → tt
isQid(e) → tt
isQid(i) → tt
isQid(o) → tt
isQid(u) → tt
__: {1, 2}
nil: empty set
and: {1}
tt: empty set
isList: empty set
isNeList: empty set
isQid: empty set
isNePal: empty set
isPal: empty set
a: empty set
e: empty set
i: empty set
o: empty set
u: empty set
Using Improved CS-DPs we result in the following initial Q-CSDP problem.
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
__1(__(X, Y), Z) → __1(X, __(Y, Z))
__1(__(X, Y), Z) → __1(Y, Z)
ISLIST(V) → ISNELIST(V)
ISLIST(__(V1, V2)) → AND(isList(V1), isList(V2))
ISLIST(__(V1, V2)) → ISLIST(V1)
ISNELIST(V) → ISQID(V)
ISNELIST(__(V1, V2)) → AND(isList(V1), isNeList(V2))
ISNELIST(__(V1, V2)) → ISLIST(V1)
ISNELIST(__(V1, V2)) → AND(isNeList(V1), isList(V2))
ISNELIST(__(V1, V2)) → ISNELIST(V1)
ISNEPAL(V) → ISQID(V)
ISNEPAL(__(I, __(P, I))) → AND(isQid(I), isPal(P))
ISNEPAL(__(I, __(P, I))) → ISQID(I)
ISPAL(V) → ISNEPAL(V)
AND(tt, X) → X
isList(V2)
isNeList(V2)
isPal(P)
AND(tt, X) → U(X)
U(isList(V2)) → ISLIST(V2)
U(isNeList(V2)) → ISNELIST(V2)
U(isPal(P)) → ISPAL(P)
__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
and(tt, X) → X
isList(V) → isNeList(V)
isList(nil) → tt
isList(__(V1, V2)) → and(isList(V1), isList(V2))
isNeList(V) → isQid(V)
isNeList(__(V1, V2)) → and(isList(V1), isNeList(V2))
isNeList(__(V1, V2)) → and(isNeList(V1), isList(V2))
isNePal(V) → isQid(V)
isNePal(__(I, __(P, I))) → and(isQid(I), isPal(P))
isPal(V) → isNePal(V)
isPal(nil) → tt
isQid(a) → tt
isQid(e) → tt
isQid(i) → tt
isQid(o) → tt
isQid(u) → tt
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
ISNELIST(__(V1, V2)) → AND(isList(V1), isNeList(V2))
AND(tt, X) → U(X)
U(isList(V2)) → ISLIST(V2)
ISLIST(V) → ISNELIST(V)
ISNELIST(__(V1, V2)) → ISLIST(V1)
ISLIST(__(V1, V2)) → AND(isList(V1), isList(V2))
ISLIST(__(V1, V2)) → ISLIST(V1)
ISNELIST(__(V1, V2)) → AND(isNeList(V1), isList(V2))
ISNELIST(__(V1, V2)) → ISNELIST(V1)
U(isNeList(V2)) → ISNELIST(V2)
U(isPal(P)) → ISPAL(P)
ISPAL(V) → ISNEPAL(V)
ISNEPAL(__(I, __(P, I))) → AND(isQid(I), isPal(P))
__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
and(tt, X) → X
isList(V) → isNeList(V)
isList(nil) → tt
isList(__(V1, V2)) → and(isList(V1), isList(V2))
isNeList(V) → isQid(V)
isNeList(__(V1, V2)) → and(isList(V1), isNeList(V2))
isNeList(__(V1, V2)) → and(isNeList(V1), isList(V2))
isNePal(V) → isQid(V)
isNePal(__(I, __(P, I))) → and(isQid(I), isPal(P))
isPal(V) → isNePal(V)
isPal(nil) → tt
isQid(a) → tt
isQid(e) → tt
isQid(i) → tt
isQid(o) → tt
isQid(u) → tt
POL(AND(x1, x2)) = x2
POL(ISLIST(x1)) = 1 + 2·x1
POL(ISNELIST(x1)) = 1 + 2·x1
POL(ISNEPAL(x1)) = 0
POL(ISPAL(x1)) = 0
POL(U(x1)) = x1
POL(__(x1, x2)) = 2 + 2·x1 + x2
POL(a) = 1
POL(and(x1, x2)) = 2·x1 + x2
POL(e) = 1
POL(i) = 2
POL(isList(x1)) = 2 + 2·x1
POL(isNeList(x1)) = 2 + 2·x1
POL(isNePal(x1)) = 0
POL(isPal(x1)) = 0
POL(isQid(x1)) = 0
POL(nil) = 0
POL(o) = 2
POL(tt) = 0
POL(u) = 1
__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
isList(V) → isNeList(V)
isList(nil) → tt
isList(__(V1, V2)) → and(isList(V1), isList(V2))
isNeList(V) → isQid(V)
isNeList(__(V1, V2)) → and(isList(V1), isNeList(V2))
isNeList(__(V1, V2)) → and(isNeList(V1), isList(V2))
isQid(a) → tt
isQid(e) → tt
isQid(i) → tt
isQid(o) → tt
isQid(u) → tt
and(tt, X) → X
isPal(V) → isNePal(V)
isPal(nil) → tt
isNePal(V) → isQid(V)
isNePal(__(I, __(P, I))) → and(isQid(I), isPal(P))
ISNELIST(__(V1, V2)) → AND(isList(V1), isNeList(V2))
U(isList(V2)) → ISLIST(V2)
ISNELIST(__(V1, V2)) → ISLIST(V1)
ISLIST(__(V1, V2)) → AND(isList(V1), isList(V2))
ISLIST(__(V1, V2)) → ISLIST(V1)
ISNELIST(__(V1, V2)) → AND(isNeList(V1), isList(V2))
ISNELIST(__(V1, V2)) → ISNELIST(V1)
U(isNeList(V2)) → ISNELIST(V2)
AND(tt, X) → U(X)
ISLIST(V) → ISNELIST(V)
U(isPal(P)) → ISPAL(P)
ISPAL(V) → ISNEPAL(V)
ISNEPAL(__(I, __(P, I))) → AND(isQid(I), isPal(P))
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ QCSDP
AND(tt, X) → U(X)
ISLIST(V) → ISNELIST(V)
U(isPal(P)) → ISPAL(P)
ISPAL(V) → ISNEPAL(V)
ISNEPAL(__(I, __(P, I))) → AND(isQid(I), isPal(P))
__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
and(tt, X) → X
isList(V) → isNeList(V)
isList(nil) → tt
isList(__(V1, V2)) → and(isList(V1), isList(V2))
isNeList(V) → isQid(V)
isNeList(__(V1, V2)) → and(isList(V1), isNeList(V2))
isNeList(__(V1, V2)) → and(isNeList(V1), isList(V2))
isNePal(V) → isQid(V)
isNePal(__(I, __(P, I))) → and(isQid(I), isPal(P))
isPal(V) → isNePal(V)
isPal(nil) → tt
isQid(a) → tt
isQid(e) → tt
isQid(i) → tt
isQid(o) → tt
isQid(u) → tt
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ QCSDP
↳ QCSUsableRulesProof
↳ QCSDP
U(isPal(P)) → ISPAL(P)
ISPAL(V) → ISNEPAL(V)
ISNEPAL(__(I, __(P, I))) → AND(isQid(I), isPal(P))
AND(tt, X) → U(X)
__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
and(tt, X) → X
isList(V) → isNeList(V)
isList(nil) → tt
isList(__(V1, V2)) → and(isList(V1), isList(V2))
isNeList(V) → isQid(V)
isNeList(__(V1, V2)) → and(isList(V1), isNeList(V2))
isNeList(__(V1, V2)) → and(isNeList(V1), isList(V2))
isNePal(V) → isQid(V)
isNePal(__(I, __(P, I))) → and(isQid(I), isPal(P))
isPal(V) → isNePal(V)
isPal(nil) → tt
isQid(a) → tt
isQid(e) → tt
isQid(i) → tt
isQid(o) → tt
isQid(u) → tt
__(__(x0, x1), x2) → __(x0, __(x1, x2))
__(x0, nil) → x0
__(nil, x0) → x0
and(tt, x0) → x0
isList(x0) → isNeList(x0)
isList(nil) → tt
isList(__(x0, x1)) → and(isList(x0), isList(x1))
isNeList(x0) → isQid(x0)
isNeList(__(x0, x1)) → and(isList(x0), isNeList(x1))
isNeList(__(x0, x1)) → and(isNeList(x0), isList(x1))
isNePal(x0) → isQid(x0)
isNePal(__(x0, __(x1, x0))) → and(isQid(x0), isPal(x1))
isPal(x0) → isNePal(x0)
isPal(nil) → tt
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ QCSDP
↳ QCSUsableRulesProof
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
U(isPal(P)) → ISPAL(P)
ISPAL(V) → ISNEPAL(V)
ISNEPAL(__(I, __(P, I))) → AND(isQid(I), isPal(P))
AND(tt, X) → U(X)
isQid(a) → tt
isQid(e) → tt
isQid(i) → tt
isQid(o) → tt
isQid(u) → tt
[isPal1, ISPAL1, ISNEPAL1, isQid1, tt, e] > [U1, AND2]
_2 > [U1, AND2]
a > [U1, AND2]
i > [U1, AND2]
o > [U1, AND2]
u > [U1, AND2]
i: multiset
a: multiset
_2: multiset
e: multiset
o: multiset
isQid1: [1]
isPal1: [1]
tt: multiset
ISPAL1: [1]
u: multiset
AND2: [2,1]
U1: [1]
ISNEPAL1: [1]
isQid(a) → tt
isQid(e) → tt
isQid(i) → tt
isQid(o) → tt
isQid(u) → tt
U(isPal(P)) → ISPAL(P)
ISNEPAL(__(I, __(P, I))) → AND(isQid(I), isPal(P))
AND(tt, X) → U(X)
ISPAL(V) → ISNEPAL(V)
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ QCSDP
↳ QCSUsableRulesProof
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ QCSDP
ISPAL(V) → ISNEPAL(V)
isQid(a) → tt
isQid(e) → tt
isQid(i) → tt
isQid(o) → tt
isQid(u) → tt
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDP
↳ QCSDPSubtermProof
__1(__(X, Y), Z) → __1(X, __(Y, Z))
__1(__(X, Y), Z) → __1(Y, Z)
__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
and(tt, X) → X
isList(V) → isNeList(V)
isList(nil) → tt
isList(__(V1, V2)) → and(isList(V1), isList(V2))
isNeList(V) → isQid(V)
isNeList(__(V1, V2)) → and(isList(V1), isNeList(V2))
isNeList(__(V1, V2)) → and(isNeList(V1), isList(V2))
isNePal(V) → isQid(V)
isNePal(__(I, __(P, I))) → and(isQid(I), isPal(P))
isPal(V) → isNePal(V)
isPal(nil) → tt
isQid(a) → tt
isQid(e) → tt
isQid(i) → tt
isQid(o) → tt
isQid(u) → tt
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
__1(__(X, Y), Z) → __1(X, __(Y, Z))
__1(__(X, Y), Z) → __1(Y, Z)
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDP
↳ QCSDPSubtermProof
↳ QCSDP
↳ PIsEmptyProof
__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
and(tt, X) → X
isList(V) → isNeList(V)
isList(nil) → tt
isList(__(V1, V2)) → and(isList(V1), isList(V2))
isNeList(V) → isQid(V)
isNeList(__(V1, V2)) → and(isList(V1), isNeList(V2))
isNeList(__(V1, V2)) → and(isNeList(V1), isList(V2))
isNePal(V) → isQid(V)
isNePal(__(I, __(P, I))) → and(isQid(I), isPal(P))
isPal(V) → isNePal(V)
isPal(nil) → tt
isQid(a) → tt
isQid(e) → tt
isQid(i) → tt
isQid(o) → tt
isQid(u) → tt